

High Dose Rate (HDR) Prostate Brachytherapy

Matthew Harkenrider, MD

Professor of Radiation Oncology Vice Chair of Clinical Operations and Education Loyola University Chicago, Stritch School of Medicine Cardinal Bernardin Cancer Center

No Disclosures

Brachytherapy

- Brachytherapy (from the Greek word βραχύς brachys, meaning "short-distance") – wikipedia
- Radioactive materials are placed inside or near a tumor or region at risk

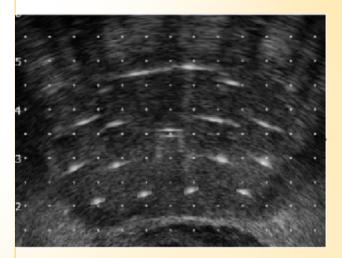
Prostate Brachytherapy at Loyola

Background

- Active Prostate LDR seed program since early 2000's
 - ~25-30 patients per year
- Planned to develop Prostate HDR program in mid-2015
- Brachytherapy team members visited high-volume centers including American Brachytherapy Society fellowship
- Adopted a CT-based planning approach

HDR Brachytherapy at LUMC

First patient treated in 9/2015


- CT-based planning initially
- Added MRI to planning for better prostate identification in 2017
- HDR Alone: 2 implants 1-2 weeks apart
 - Low Risk
 - Intermediate Risk
 - Prior Radiation to the prostate with recurrence in the prostate
- HDR Boost: 1 implant, 1-4 weeks before OR after external beam radiation
 - Intermediate risk with disease extending outside of the prostate
 - **High Risk**

HDR Brachytherapy at LUMC

Procedure (1-1.5 hours)

- General anesthesia (put to sleep)
- Catheter in penis to drain urine
- Legs up, penis/scrotum elevated, ultrasound in rectum
- Size of prostate measured
- Template chosen based on prostate size
- Needles placed through perineum (skin between scrotum and rectum) to cover entire prostate using ultrasound to guide positioning
- Needles can be repositioned as needed to ensure good positioning
- Needles advanced
- Template sewn to the perineum
- Cystoscopy (urologist inserts camera through penis in to the bladder)
- Advance needles to abut the bladder but not into bladder
- Wake from anesthesia

OR Recovery (1 hour)

HDR Brachytherapy at LUMC

Treatment Planning (3-4 hours)

- Radiation Planning CT and MRI Scans
- Hang out while we plan and approve treatment
- Connect needles to HDR machine

Treatment (30 minutes)

- Radiation seed treats inside each needle, top to bottom as planned
- No pain, heat, burning
- No radiation left inside after treatment
- Radiation seed goes back to machine

Finishing up (30-60 minutes)

- Disconnect needles from HDR machine
- Removal of needles
- Removal of catheter
- Go pee
- Go home

After Care

- Medications
 - Tamsulosin 0.4mg daily (can increase to twice daily if needed) for urination
 - Naproxen 250mg twice daily for inflammation
 - Can resume blood thinners (where applicable) the next day
- Restrictions
 - 10lb lifting for 3 days
- NOT restrictions
 - No radiation safety concerns
 - OK to share bed with a partner
 - OK to be around individuals age <18 or pregnant</p>
 - Sexual activity OIK
- Follow up at 1 month for symptom check
- PSA at 3 months for surveillance (continue every 3-6 months)

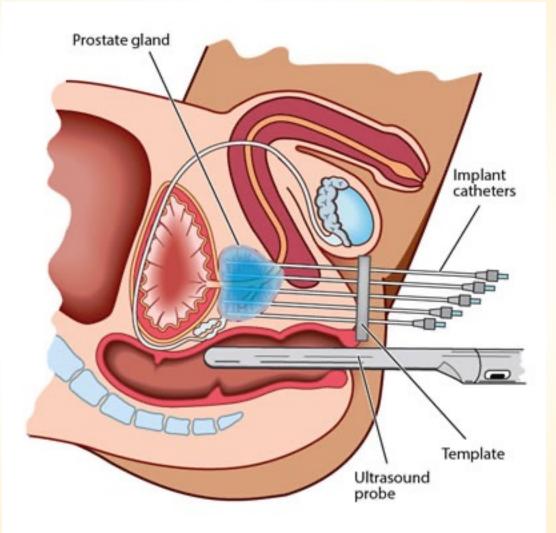
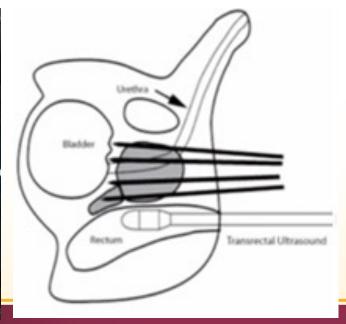


Image reproduced with permission of Prostate Cancer Foundation of Australia.

A MEMBER OF 😿 TRINITY HEALTH

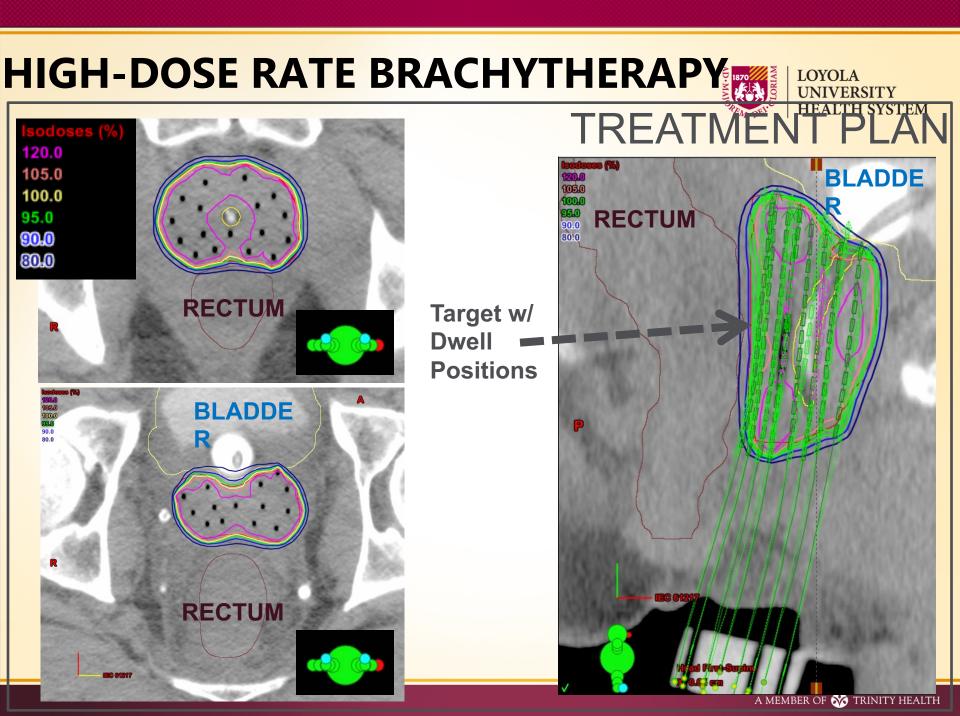
HIGH-DOSE RATE BRACHYTHERAPY


LOYOLA UNIVERSITY HEALTH SYSTEM

FREE-HAND TEMPLATE

U/S-GUIDED CATHETER

HIGH-DOSE RATE BRACHYTHERAPY


TREATMENT PLANNING

Treatment Planning

Structure	Index			Target Value	Actual
PTV	V100.00 [% of w	V100.00 [% of volume] is more th		an 95.00	98.27
PTV	V150.00 [% of volume]		is less th	an 35.00	29.77
PTV	V200.00 [% of volume]		is less th	an 20.00	7.81
BLADDER	D1.00cc [cGy]		is less th	an 1125.00	1122.66
BLADDER	D0.10cc [cGy]		is less the	an 1425.00	1235.64
BLDR*NECK	D0.10cc [cGy]		is less th	an 1200.00	1039.26
RECTUM	D1.00cc [cGy]		is less th	an 1125.00	1124.62
URETHRA	D0.00cc [cGy]		is less th	an 1800.00	1798.95
URETHRA	D1.00cc [cGy]		is less the	an 1650.00	1649.11
BLADDER	V11.25Gy [cm²]		is less th	an 1.00	0.97
RECTUM	V11.25Gy [cm*]		is less the	an 1.00	1.00
	User: asolanki	Group:	Oncologist	Site: Main CAP	

HDR Alone Disease Control

EALTH

	Fractionation	Ν	Median Follow- up	Study	PSA Control
CET/UCLA Hauswald, IJROBP 2015	7-7.25 Gy x 6	448	6.5 yrs	Low/Int	99%
UK Hoskin, Radiother Oncol 2017	13 Gy x 2 19-20 x 1	293	4 yrs	Int/High	91-94%
Beaumont Jawad, IJROBP 2016	9.5 Gy x 4 13-13.5 Gy x 2	494	4 yrs	Low/Int	87-97%
GammaWest Rogers, J Urol 2012	6.5 Gy x 6	284	3 yrs	Int only	94%
Germany Zamboglou, IJROBP 2013	9.5 Gy x 4 11.5 x 3	718	4.4 yrs	All	93%

HDR Monotherapy Toxicity

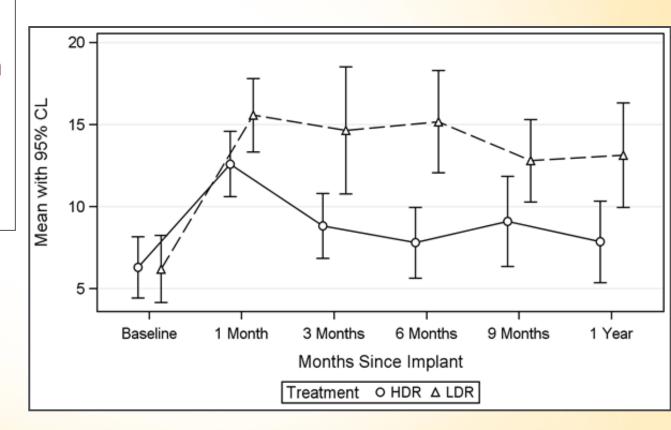
Study	Fractionation	Urinary Grade 2	Urinary Grade 3	Bowel Grade 2	Bowel Grade 3
CET/UCLA Hauswald, IJROBP 2015	7-7.25 Gy x 6	NR	4.7%	NR	0%
UK Hoskin, Radiother Oncol 2017	10.5 Gy x 3 13 Gy x 2 19-20 x 1	15-33%	2-11%	2-6%	0-1%
Beaumont Jawad, IJROBP 2016	9.5 Gy x 4 13-13.5 Gy x 2	20%	<1%	<10%	0%
GammaWest Rogers, J Urol 2012	6.5 Gy x 6	1.5%	0.6%	0%	0%
Germany Zamboglou, IJROBP 2013	9.5 Gy x 4 11.5 x 3	~2-9%	3.5%	~0.5%-1.5%	1.6%

LDR vs. HDR Acute Toxicity LUMC Experience

N=167

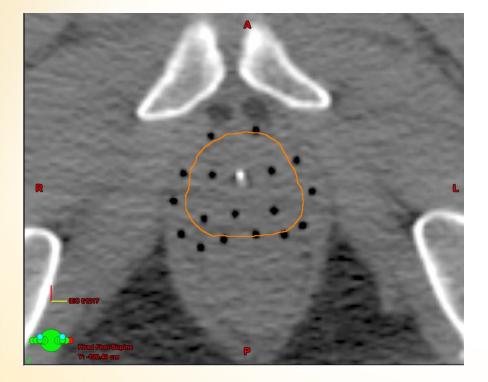
• 2012-2017

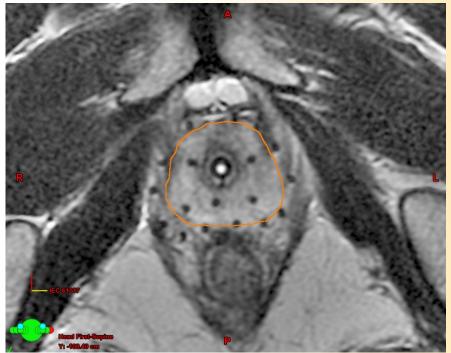
	Total (n=167)	LDR (n = 78)	HDR (n = 89)	P-value
Age (Mean, SD)	66.5 (8.4)	66.7 (9.6)	66.4 (5.8)	0.77
Gland Size (Mean, SD)	35.8 (12.3)	34.4 (11.0)	37.0 (13.3)	0.18
Setting (n, %)				0.99
Monotherapy	122 (73%)	57 (73%)	65 (73%)	
Boost	45 (27%)	21 (27%)	24 (27%)	
Risk Category (n, %)				<0.01
Low	59 (35%)	40 (51%)	19 (21%)	
Intermediate	89 (53%)	34 (44%)	55 (62%)	
High	19 (11%)	4 (5%)	15 (17%)	


LDR vs. HDR IPSS Score Kinetics

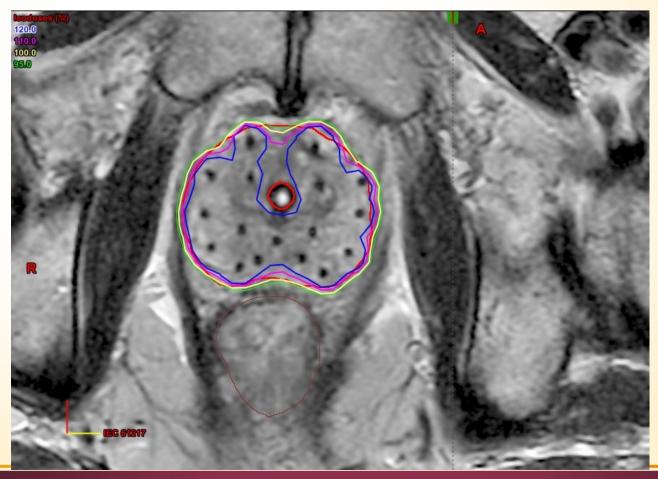
LOYOLA UNIVERSITY HEALTH SYSTEM

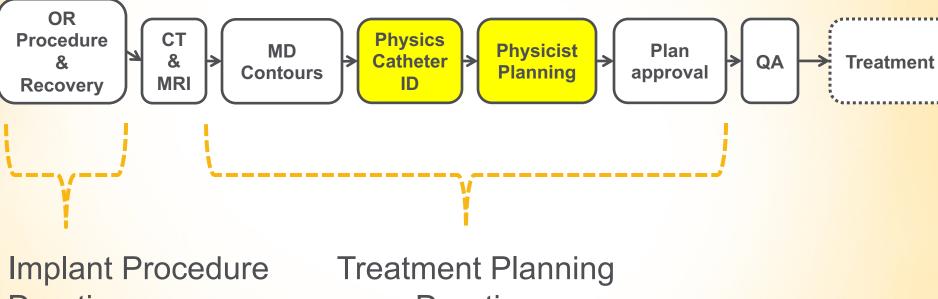
HDR:


- More Rapid
 Improvement in
 Urinary Fxn
- Resolves closer to baseline



Hentz et al, ASTRO, 2017


MRI-guided Brachytherapy Planning


MRI-guided Brachytherapy Planning

A MEMBER OF 🈿 TRINITY HEALTH

Duration

Duration

Patient selection

Any risk group

- Low/Intermediate HDR alone
- High HDR + external + hormone therapy
- Prior radiation and recurrent in prostate only (PET and MRI)
- Not a good option for lymph nodes or distant sites involved

Urinary function

- Good/Fair
- Poor urinary function increases risk of side effects

Prostate size

- Rare limitation by large size (>100cc)
- No medications needed to downsize prostate

Conclusion

- HDR brachytherapy is one of several good curative options for patients with prostate cancer
- Results in excellent cure rates with good urinary and bowel function

Questions

LOYOLA UNIVERSITY HEALTH SYSTEM

- Procedure numbers 8-10 per month
- Prep work or tests Primary Doc or Cardiologist within 6 mos (any tests per MD). Hold blood thinner.
- Volume study needed only for very large gland (~100cc)
- Dislikes about procedure long day, slight adjustments at CT scan
- Expected PSA control
 - Low/Favorable intermediate ~95%
 - Unfavorable intermediate ~90%
 - High risk ~85%

Acknowledgements

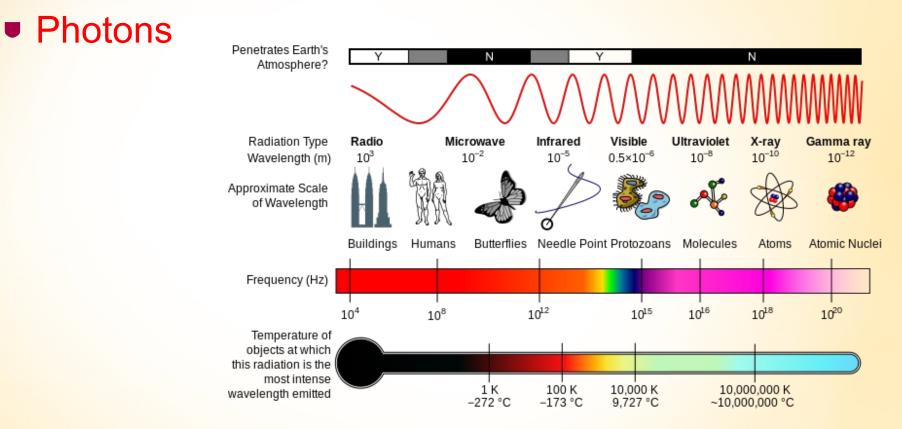
LOYOLA UNIVERSITY HEALTH SYSTEM

Loyola Rad Onc Team:

- Abhishek Solanki, MD
- Matthew Harkenrider, MD
- Julie Cronin, RN, BSN (special procedure nurse)
- John Roeske, PhD
- Brian Lee, PhD
- Hyejoo Kang, PhD
- Michael Mysz, MS
- Jacob Jackson, MS
- Tiffany Tsui, MS

Questions?

What is Radiation Therapy


LOYOLA UNIVERSITY HEALTH SYSTEM

- Photons
 - X-rays
 - Gamma Rays
- Electrons
- Protons
- Neutrons
- Alpha Particles
- Carbon lons

What is Radiation Therapy

A MEMBER OF 🐝 TRINITY HEALTH

What is Radiation Therapy

Photons

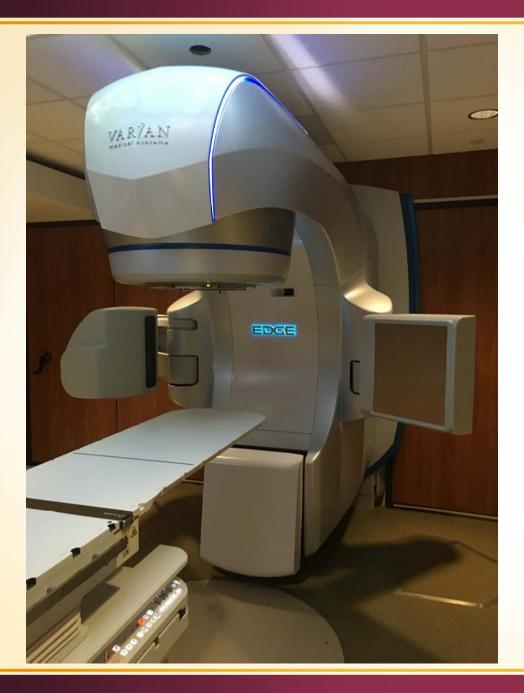
- A photon is a massless elementary particle, the quantum of light
 - X-rays
 - Emitted by electrons
 - Generated by linear accelerator
 - Particle used in external beam radiotherapy (EBRT)
 - Gamma Rays
 - Emitted by the atomic nucleus
 - Generated by nuclear decay of unstable (radioactive) isotopes
 - Particle used in brachytherapy

External Beam Radiation Therapy

- Broader Term is Teletherapy (*tele* from <u>Ancient</u> <u>Greek τῆλε (*tēle*, "at a distance, far off, far away,</u> <u>far from").</u> – wikipedia
- Patient lies on a table and the radiation source or linear accelerator is aimed at an intended part of the body (the tumor or regions at risk for harboring tumor cells)

External Beam Radiation Therapy

EBRT


- Includes older technologies Cobalt-60, Orthovoltage
- More modern techniques 3D-Conformal RT
- Even more modern techniques Intensity Modulated Radiation Therapy
- Even more targeted techniques Stereotactic Radiosurgery

Linear Accelerator

LOYOLA UNIVERSITY HEALTH SYSTEM

Linear Accelerator

Radiation Dose

Gray (always singular)

- Unit of dose of radiation therapy
- Quantifies the deposition of radiation in tissue
- Transfer of light energy (photons) into physical and chemical energy (moving electrons) in the patient
- Electrons will damage DNA directly and also create free radicals (hydroxyls) to damage DNA indirectly